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Abstract8

We argue that pain is not needed to protect the body from damage unless the9

organism is able to make free choices in action selection. Then pain (including its10

affective and evaluative aspects) provides a necessary prioritising motivation to se-11

lect actions expected to avoid it, whilst leaving the possibility of alternative actions12

to serve potentially higher priorities. Thus, on adaptive grounds, only organisms13

having free choice over action selection should experience pain. Free choice implies14

actions must be selected following appraisal of their effects, requiring a predictive15

model generating estimates of action outcomes. These features give organisms an-16

ticipatory behavioural autonomy (ABA) for which we propose a plausible system17

using an internal predictive model, integrated into a system able to produce the18

qualitative and affective aspects of pain. Our hypothesis can be tested using be-19

havioural experiments designed to elicit trade-off responses to novel experiences for20

which algorithmic (automaton) responses might be inappropriate. We discuss the21
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empirical evidence for our hypothesis among taxonomic groups, showing how testing22

for ABA guides thinking on which groups might experience pain. It is likely that23

all vertebrates do and plausible that some invertebrates do (decapods, cephalopods24

and at least some insects).25
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1 Introduction - the three faces of pain29

It is still common for pain to be explained as an evolved mechanism for protecting30

body parts from acute injury, even though it is accepted that reflex withdrawal is of-31

ten sufficient for that purpose. Our question here is not about immediate responses to32

nociception; we seek a biological explanation for pain as defined by the International As-33

sociation for the Study of Pain (IASP): “An unpleasant sensory and emotional experience34

associated with, or resembling that associated with, actual or potential tissue damage”35

– (Raja et al. 2020). For that we need to define the terms of emotional experience.36

1.1 Working definitions37

• Sentience: Crump et al. (2022) provide an excellent definition: “Sentience is the38

capacity to feel. Understood broadly, sentience encompasses all felt experiences,39

including sensory experiences (e.g. visual, auditory, tactile, olfactory) as well as40

(for example) feelings of warmth, comfort, fatigue, hunger, thirst, boredom, ex-41

citement, distress, anxiety, pain, pleasure and joy. This capacity to feel should be42

distinguished from other, related capacities: a sentient being might not be able to43

reflect on its feelings or to understand others’ feelings”. Sentience is one of several44
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dimensions of consciousness, though often the words sentience and consciousness45

are used interchangeably. Sentience is self-evidently needed for pain, but con-46

sciousness might not be: this is the crux of contention over whether animals of47

different kinds can feel pain, so we agree with Browning and Birch (2022), that a48

clear distinction is essential.49

• Feelings (qualia): are subjective (phenomenal) experiences, including pain. We50

cannot detect feelings by direct empirical study because they are definitively sub-51

jective and so bounded by the agent experiencing them: this fact has led to52

much philosophical debate over whether they even exist (Tye 2021). It is use-53

ful to consider them as emergent phenomena generated by (brain) information54

processing. Recently, Clark et al. (2019) made that idea concrete using the pre-55

dictive processing theory of perception and consciousness, concluding that qualia56

are intermediate-level models generated by “Bayesian brains”. More generally, we57

take qualia to be mental constructs that can be functional and, crucially here,58

motivational (Hall 2008, Fulkerson 2021).59

• Consciousness: includes several dimensions additional to sentience (Birch et al.60

2020b), though sentience is one of its requirements (see Nani et al. 2021). Con-61

sciousness is notoriously difficult to identify and study scientifically, partly because62

it is subjective, but also because we still have no consensus on its definition (Michel63

2020). Of greatest significance here are the dimensions of a) self-awareness, de-64

rived from a ‘meta-perception’ system that perceives the perception of internal and65

external stimuli and b) the integration of perception from internal and external66

stimuli, along with memory and any available outputs from internal generative67

models, to form a coherent whole ‘mental image’. Pain requires sentience because68

it is a feeling and it requires integration because it operates at the whole organism69

level, but pain might not require the other dimensions of consciousness, though70
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researchers differ over meta-perception: e.g. Key et al. (2021; 2022) consider it the71

primary requirement for pain experience.72

• Emotion (affect): has been implicated in appraisal (Scherer et al. 2001), for ac-73

tion selection (Mendl and Paul 2020) and also direct motivation (Barlassina and74

Hayward 2019). Helm (2002) defined emotions as “not mere phenomenal states75

but evaluative responses to one’s situation”, though recognising that “emotions are76

feelings” as well. Affect is usually regarded as a top-level (system) phenomenon77

that sets the internal context for information processing and action selection: an78

internal psychological milieu (via neurohormones) modulating the parameters of79

judgement. To that extent emotions are evaluative in function. Confusion arises80

because we know from introspection that emotions have associated feelings (some81

say they are feelings): there is definitely something it is like to be joyful or dis-82

gusted, etc.. It is useful here to consider affect as a summarising self-appraisal83

of an organism’s situation as represented by an internal model; one that exists at84

the level of the integrated whole of the organism (including physiological responses85

and motor expressions) (Scherer 2022).86

1.2 Approaches to pain87

Following the pioneering model of Melzack and Casey (1968), pain is broadly recognised88

to have three dimensions: sensory-discriminative; affective-motivational and cognitive-89

evaluative (Corns 2014). Pains are feelings with perceptual specificity of location, in-90

tensity and quality that are generally noxious, draw attention and motivate those ex-91

periencing them to avoid them in future. A simple animal such as the protist Stentor92

can withdraw and guard itself following a noxious stimulus but we doubt it is capable of93

‘feeling’ anything. Similarly, Cnidarians are are usually assumed non-sentient. Though94

capable of sensitisation (an escalating response to a stimulus (e.g. Cheng 2021)), evi-95

dence of sentience among them is lacking. By definition (Crump et al. 2022), feelings96

4



require sentience to create a phenomenal experience, so only sentient organisms can feel97

pain.98

From philosophy, the ‘imperativist’ account of pain (Hall 2008, Klein 2007, Martinez99

2011; 2015) and the (related) realisation that pain could be interpreted as a part of a100

homeostatic regulation system for the body, provides valuable context. The imperativist101

account is that pain is not information about bodily damage or its potential, but rather102

is a command or motivation for taking action to protect the body from damage (actual or103

potential). This idea (explained further in the Appendix: On the philosophical analysis104

of pain), has been corroborated by animal studies showing lasting changes in motivation105

and behaviour following noxious experiences (Sneddon et al. 2014). At the heart of our106

present thesis is the realisation that this command may be functional only for organisms107

that have freedom to choose among a range of options for action. That is, only if action-108

selection mechanisms are not pre-programmed (algorithmic), but rather are the result of109

the evaluation of possible action. Importantly, pain is not required if action selection is110

strictly reactive with no anticipation of possible futures - in such cases, a rigid relation111

between perception and action is always sufficient.112

For organisms able to anticipate future states, action selection is the result of an113

internally generated decision based on modelling and evaluating possible future states.114

The decision is based on the optimisation of some (hedonic) utility currency and is a115

free choice. We term this process proactive autonomy and organisms possessing the116

freedom it implies would benefit from a strong motivation to attend to injury when117

evaluating all the options. Conversely, an organism whose action selection is determined118

by a state-dependent information processing algorithm (if in state S do X), however119

complicated, gains no advantage from such motivation as pain could provide. The algo-120

rithm would instantiate the necessary and sufficient internal information for action to121

be taken, whether it is to protect against (further) injury, or to continue the current122

behaviour (e.g. fighting). The information constituting this algorithm could sufficiently123
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be obtained by inheritance and may include sensor and activation threshold shifts in124

response to repetition of stimulus, enabling habituation or conditioning (simple non-125

associative learning), without the need for modelling and evaluation. Such an algorithm126

would facilitate what we call reactive autonomy (Fig 1).127

An organism that has an internal model predicting accessible future states could in128

principle initiate behaviours without an external stimulus (i.e. it does not depend on129

reaction) and could therefore be capable of anticipatory behavioural autonomy (ABA -130

defined in Section 2.2). It is this ability that most readily justifies a cognitive-evaluative131

dimension to pain, since that would describe the comparison of the expected outcomes132

of available actions. Pain’s role would be to motivate the organism to prioritise attention133

towards the source of the pain (i.e. salience), but would leave open the possibility of134

attending to a more pressing matter, such as escape.135

In this view, pain is part of the organism’s behaviour control system. In general,136

control is constraint (see Montévil and Mossio (2015)) and all constraint is the result137

of organising information (Bich et al. 2020, Farnsworth et al. 2013, Farnsworth 2022,138

Montévil and Mossio 2015, Mossio et al. 2016). This information is not merely the signal1139

of nociception, but crucially includes the causal structure of the cybernetic system: either140

as an algorithm for reactive autonomy or an internal model and evaluation system for141

proactive autonomy. The operation of cybernetic systems that determine action selection142

is entirely one of information processing, i.e. computation, coupled to the physical world143

by actuators that physically perform the actions. Understanding this information basis144

for control is important in identifying the autonomy required for ABA (see Sections 2.1145

- 2.2).146

There are three broad approaches to establishing whether an organism can feel pain.147

Firstly behavioural responses, especially in highly constrained experimental arrange-148

1We use ‘signal’ in the standard engineering sense of variation indicating data concerning its source,
rather than the special sense of an organism generated sign conveying information, used in behaviour
science.
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ments, can match our expectation for an organism feeling pain, but since pain is neces-149

sarily subjective, this can never provide a definitive answer. Most taking this approach150

carefully limit their interpretation as: observed behaviours are consistent with expecta-151

tions for pain (Elwood 2019; 2021). Secondly, we may seek the neural circuitry thought152

to be necessary for pain (as in Key 2015, Key and Brown 2018, Key et al. 2021). How-153

ever, we do not yet know what circuits are necessary and rely on either broad categories154

of processing, e.g. that there must be a subsystem to monitor and create awareness of155

the internal state of the perception system, or specific hypotheses about parts of the156

necessary circuits, e.g. that they must include feed-forward and comparator elements157

(Key et al. 2021). The problem with the former is that it can be too broad, leaving an-158

swers unclear. The problem with the latter is that any system proposed as necessary for159

generating the subjective feeling of pain remains an untested hypothesis until we know160

what is necessary. The third approach, which has received remarkably little attention,161

asks which evolved system (or behaviour) needs the subjective feeling of pain in order162

to work. If we can identify a system that requires pain for its functioning, together with163

the organisms that possess that system, then we might reasonably presume they will feel164

pain. This is the (philosophically functionalist) approach we adopt here.165

2 Understanding systems that might use pain166

Pain requires sentience and it is widely thought that sentience requires an internal model167

of the self: “subjective experience arises from [...] an integrated simulation of the state of168

the animal’s own mobile body within the environment” – (Barron and Klein 2016). This169

internal model is an essential component of computer representations of animals in wel-170

fare research, conceived with widely differing perspectives (e.g. Budaev et al. 2020, Key171

et al. 2022). Within philosophy, such models are intrinsically implied by representational172

accounts of pain and are necessary for evaluative accounts beyond the strictly reactive173
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(i.e. whenever options are to be evaluated for their future consequences). Philosophers174

rarely refer to models in the technical sense of inferential networks of causal relations,175

but do assume them as necessary for sentience: classically as the ‘inner world’, host176

to the ‘Cartesian theatre’, or the ‘global workspace’, or ‘multiple drafts’ of conscious-177

ness (Dennett 1991) and more explicitly in the case of the ‘neuromatrix theory’ of pain178

(Melzack 2001). A self-model was conceived by Farnsworth (2017) as part of a mecha-179

nistic explanation for free choice in general systems, including organisms and AI systems180

and a conceptually similar system was proposed by Ridderinkhof (2017). In every men-181

tioned case, the self-model forms part of an allostatic (predictive homeostatic) system182

that justifies and makes concrete the motivational aspect of felt experiences.183

We propose that pain provides for a universal currency (accessible throughout the184

organism’s behaviour control system) for evaluation in anticipatory action selection,185

one that can command salience and encode information in its qualitative character (as186

Cabanac (1992) describes in relation to pleasure). This strongly suggests a felt experi-187

ence, implying sentience, but not necessarily the self-awareness, derived from a ‘meta-188

perception’ system (Cunningham 2001), as thought essential by Key and Brown (2018),189

and argued for by Brown et al. (2021) in response to Birch et al. (2020a). Higher-190

order-thought theories of consciousness imply that for awareness of pain there must be a191

subsystem (module) that ‘listens in’ to the universal signals and reports to a hypothet-192

ical executive centre, supposed to be the ‘theatre of consciousness’. This idea has been193

criticised (e.g. Dennett 1991) for falling into the ‘homunculus fallacy’ (Baltzer-Jaray194

2018) and certainly strays from the principle of parsimony that we should adhere to in195

scientific explanation. We believe that the formation of an internal representation of the196

self can produce a phenomenal state with intrinsic evaluative character and that this is197

sufficient to explain the qualitative feeling of e.g. pain. What it is like to be in some198

degree of pain is the same as what it is like to have a particular self-model result. That199

is not a model output, since the result is a state of the internal model. In turn, since200
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the model is an integral, globally accessible part of the organism, the whole organism is201

in that state: a particular phenomenal state we term its Q-state. In this view, pain is202

a dispositional state of an organism having a predictive model of possible actions and203

using feelings as the arbiter of choice among them.204

2.1 Autonomy and Action Selection205

Autonomy is the property of a system undergoing state changes caused by internal206

events, so that it is at least partly controlled by internalised information rather than207

entirely by external causes. Action selection is the resolution of conflicts between com-208

peting behavioural options. We define Proactive autonomy as the ability of an agent to209

act in the physical world in a way that is determined by the free (non-random) choice of210

the system. Since there is a choice, there must be at least two viable options and some211

sort of action-selection system that implements fitness enhancing decision, which in turn212

implies a system-level utility function to be maximised by the choice. Proactive auton-213

omy implies proximate agent causation: the agent is the causal source of the action.214

An explanation of how this is possible for living systems is provided in the Appendix:215

On Autonomy. Organisms possessing proactive autonomy display the ability to respond216

differently to the same external stimulus depending on their independent assessment,217

enabling appropriate responses to be made to novel circumstances and to take account218

of future possibilities such as deferred rewards. It is the freedom of choice, enabled219

by a-priori indeterminacy of outcome, that requires a normative (reward/punishment)220

evaluation of possible outcomes. The indeterminacy of outcome does not mean that it221

is random; rather, it is contingent upon some internal computation that is not prepro-222

grammed. Proactive action selection solves an optimisation problem, for which it needs223

a common currency Y to represent the desirability of each competing behaviour. An224

arbitrary set of actions can be compared to find which maximises Y given the conditions.225

Y then acts as an objective function (in the optimality theory sense), the maximisation226
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of which will be the ‘goal’. The idea of common currency in this context was pioneered227

by McFarland et al. (1975), interpreted as biological fitness in the ecological context by228

McNamara and Houston (1986) and as pleasure by Cabanac (1992) who extended it to229

an explanation for emotion (Cabanac 2002).230

In homeostasis (the most basic form of goal-dependent control shown in Fig. 1.a)231

the goal is embodied as a set-point. Different perception signals (S1 and S2) can be232

‘hard wired’ to modulate one another to achieve a rudimentary form of action selec-233

tion Fig. 1.b). If only one action is possible (e.g. in the escape reaction of Paramecium234

(Brette 2021)), then action-selection does not arise, but a homeostatic system comparing235

multiple perceived signals with their corresponding goals may be used to switch the ac-236

tion ON or OFF using summation, or a winner takes all circuit (Tymoshchuk and Shatnyi237

2015) (Fig. 1.c). Single-celled organisms are equipped with these sort of action-selection238

systems, e.g. for selecting between tumbling and swimming in the chemotaxis (actually239

kinesis) of E. coli (Berg 2004). When there are multiple perceptual signals and multi-240

ple possible actions, computation of the most appropriate response rapidly increases in241

complexity: a problem that could be alleviated using a global modulation signal that242

integrates the deviations on all the channels (Fig. 1.d). Organisms with small distributed243

neural networks may implement this sort of control architecture2 .244

2 C. elegans provides a clear example, where modulation and integration were found through
molecular-level studies of individual neurons associated with specific behaviours such as chemokine-
sis, repulsion and aggregation. Cheung et al. (2005) showed the modulation of roaming bahaviour by
the aerokinetic (oxygen seeking) motive in C. elegans. A suite of similar cross modulation systems and
their integration was reviewed by Bargmann (2012), covering C. elegans and Drosophila neural circuits.
In both cases, multiple behavioural motivation systems were found to be extensively cross-modulated by
neurohormone control systems. At a higher level of behavioural integration - the ‘threat-reward’ decision
system of C. elegans was found by Liu et al. (2020) to be cross-modulated by GABA secretion in reward
biased motor neurons, with reception in cholinergic pre-motor neurons that control avoidance behaviour.
The effect was that the D-AVA circuit integrates simultaneous attracting and repelling stimuli to pro-
duce an outcome that is “dynamically regulated by the motor system”. This finding corroborates the
theory presented by Kaplan et al. (2018) , in reviewing the evidence for inter-neuron integration and
modulation of behaviour control (action selection) in C. elegans. Rather than segregated feed-forward
sensory–to–motor control systems, they suggested that distributed integration of sensory and motor sig-
nals, in conjunction with neurohormones, performed computations to generate the observed behaviour
(analogous to the computations of an artificial neural network). Further support for this comes from
the entirely different approach of dynamic modelling of the complete neural network of C. elegans by
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Antonopoulos et al. (2016), where the information theoretic measure φ, from Integrated Information
Theory (Tononi 2008) , revealed significant computation creating new information within the network.
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Figure 1: Reactive action-selection systems (autonomous control parts shaded). a is the
simplest kind with two sensor - actuator channels acting independently. The actuators
(A1 and A2) are triggered by exceeding a threshold in error signal (E1 and E2) which
is the difference between the input signals (S1 and S2) and the set points (goal G1 and
G2). b adds cross modulation for resolving conflict between A1 and A2 (e.g. E1 could
inhibit A2 by increasing G2). c shows multiple sensors and their associated set points
combined by summation into a general action (arousal) signal for a single action A (e.g.
escape); this could also be implemented through a ‘winner takes all’ algorithm instead
of the summation. In d, three sensors add complication, especially in conflict resolution
among actions (A1, A2 and A3). In principle, a complicated algorithm could embody
a solution to all possible states for this system. In practice it is simpler to solve it by
modulating the response thresholds of action signals with a general (arousal) signal W
generated by summing the errors (E1, E2 and E3) along with an overall set point for
arousal GW. This solution is generalisable to any number of sensors and actuators. In
this example, E1 has an inhibitory effect (reduces) G2 and G3 and E2 reduces G3, but
several other cross-modulations are possible here. (Blue shading for internally generated
(free) signals).
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Optimisation of a single (global) currency does not require a set-point since the max-245

imum or minimum are self-evident extrema. Thus in principle, action selection does not246

need independently stored information (as the set point), but solving the optimisation247

problem simply by reaction (i.e. in the absence of anticipation as illustrated in Fig. 1.a-248

d)) would entail repeated cycling through the behavioural options to measure the realised249

value of the objective function in search of its optimum. That would likely be very in-250

efficient and perhaps also risky. The alternative is to anticipate the objective function251

value for each candidate behaviour and select based on these predictions. This enables252

the action-selection system to be more general as it can solve the optimality problem253

in any conditions for which the outcomes of each behaviour can be estimated. There254

is now convincing evidence that this sort of anticipatory action selection is available to255

Drosophila flies (Barajas-Azpeleta et al. 2021, Cheriyamkunnel et al. 2021, Jiang and256

Pan 2022), as well as cephalopods (Ponte et al. 2022) and vertebrates such as corvids257

(Clayton et al. 2003).258

2.2 Anticipatory action selection259

Anticipatory action selection is action selection in which future states enter the decision-260

making. It includes allostatic systems (Sterling 2012) and predictive processing schemes,261

especially active inference (Friston et al. 2013, Pezzulo et al. 2022), which uses a gener-262

ative model. More mechanistic models representing multiple possible futures have been263

incorporated in computer simulations of animal behaviour (e.g. Butz and Hoffmann 2002,264

Matsumoto and Tani 2020, Budaev et al. 2020). Since anticipatory action selection uses265

unrealised future states in its determination, it necessarily implies proactive autonomy.266

We have seen that in reactive autonomy, the response to stimuli is determined by a267

response-generating algorithm. That algorithm is information embodied as an internal268

mechanism of the system and is a consequence of evolution and development. In simple269

(allostatic) systems, anticipation is also built into the control system by an algorithm270

13



with pre-programmed information, for example the anticipation of diurnal temperature271

variation in physiological control (Pezzulo et al. 2022). The algorithm in these cases272

creates a link between stimulus and response that may be mediated by internal sig-273

nal processing (e.g. by servomechanisms and internal oscillators (Cheng 2022)), but is274

causally necessary, i.e. part of a continuous uninterrupted chain. By contrast, an agent275

capable of proactive autonomy responds to a stimulus with an action chosen through276

evaluating the predicted outcome for each available option, using an internally generated277

goal as a guide (Hoffmann 2003), breaking the causal chain and introducing branching278

and other options (Ellis and Kopel 2019). The key difference between causally neces-279

sary linkage and proactive autonomy is captured by the idea that the former could be280

analysed using the engineering ‘black box’ approach to characterising systems by their281

input-output relations, while the latter produces outputs that cannot be understood282

from a knowledge of the inputs alone.283

Predictions could, in principle, be provided by matching to memories of possible284

outcomes for every anticipated situation (a sort of database), but that would likely285

be cumbersome and inflexible. A strong competitive advantage can be gained from286

the ability to predict a possible future and select the action that maximises an objective287

function in novel circumstances, especially in an information-rich environment (Butz and288

Hoffmann 2002). The information system that fulfils the purpose, even for previously289

unanticipated circumstances, is a model of the self within the environment. It is a290

transformation (in the mathematical sense) between an input set of stimulus signals291

and an output that represents the desirability of an outcome (hedonic valuation). The292

transformation depends on both the action under evaluation and the state of the agent293

following the action, given the sensory inputs. Feed-forward models (systems that predict294

afferent signals, given the current efferent signals) are typically used to perform the295

transformation in anticipatory control systems (Fig. 2.A). Artificial neural networks are296

often used for the computation in engineering (e.g. Matsumoto and Tani 2020) and297
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neural networks are known to implement it for the motor control of organisms (e.g.298

Jékely et al. 2021). This is extended to action selection by implementing a forward299

model for each potential action, predicting its outcome prior to realisation. Outcomes300

are generalised by a hedonic signal to be optimised for action selection. This signal may301

in practice be a neurohormone encoding valence information, which can then be used302

to select actions, e.g. by controlling the thresholds for actions to be realised Fig. 2.B).303

Since the information for appraisal results from training (by reinforcement learning) of304

the forward model, it is internal and inherent to the control system (i.e. the organism)305

and to that extent free from exogenous control. It could function as a distress signal,306

but does not fulfil all the requirements for pain itself.307
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Figure 2: Control systems using forward models to predict the afferent result of actions.
In a, the forward model continuously predicts the effect of the current control signals
to enable feedback through which they are refined. This is a standard method for re-
fining motor control. In b, this is adapted to predict a normative (hedonic) summary
of the effect of each potential action (A1, A2) for use in action selection. Each forward
model uses the corresponding efferent signal together with environmental perception,
(S) for context, to generate an appraisal signal which may be implemented as a neuro-
hormone level (indicated with green shading). This signal modulates the thresholds for
enacting A1 and A2 (and the threshold gated action signals mutually inhibit to prevent
indecision). The potential actions are realised as control signals generated by internal
pre-programmed routines, but the forward models are trained by conditioning (rein-
forcement learning) to produce appropriate hedonic appraisal signals which therefore
are internal (free) signals.

Forward models that can learn to generate a hedonic signal from potential actions,308

given a perceived context, can be implemented by recurrent neural networks with hor-309
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mone secreting output neurons. This system is limited to a finite set of ‘rote’ behaviours310

with fixed threshold control circuitry implementing action selection, but it can be gener-311

alised. Farnsworth (2017) proposed a more general system for which the internal model312

might have to be a universal Turing machine, though this is not a particularly onerous313

condition in practice (Graves et al. 2014). Alternatively, in the active inference ap-314

proach, the idea of selecting an optimal action is replaced by finding optimal inferences315

(Bayesian beliefs) about likely future behaviours and their consequences (Friston et al.316

2013). That uses an internal generative model, the states of which become probabilis-317

tic representations of external states (the physical world including the self). A hidden318

Markov model is a natural fit for it, readily implemented by a neural network. Active319

inference incorporates the goal as a minimisation of the divergence between the proba-320

bility distribution of attainable states and states believed to confer high utility (Friston321

et al. 2013). It accounts for motivation (Clark 2020, Tate 2021), though not initiative322

(Klein 2018).323

Initiative (the ability to change or initiate a behaviour independent of external stim-324

ulus or ‘pre-programmed control’) is the main emergent property of proactive autonomy325

derived from an internal model. We call it anticipatory behavioural autonomy (ABA) to326

emphasise the autonomy of decision-making and rational intention of the initiative – a327

point made by Hoffmann (2003) who termed the phenomenon “anticipatory behavioral328

control”. Proactive autonomy, based on evaluation of outcomes predicted by an internal329

model, enables behavioural autonomy (Schneider 2018). If the evaluation uses a common330

currency to represent the desirability of outcomes (e.g. a valence-informing hormone sig-331

nal), then an arbitrary set of behaviours and outcomes can be compared in that common332

currency. With hormones, accessible to the whole organism’s behavioural control system,333

outcomes from different behaviours can be integrated to find the solution to trade-offs334

such as between feeding and threat or reproductive opportunities. Dopamine (generally335

involved in reward), serotonin (mediating anxiety) and cortisol or hyperglycemic hor-336
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mone (arousal) are plausible candidates for this. ABA, then, is behavioural autonomy337

in which the choice is based on the organism’s prediction of a global hedonic value under338

each of the available options. Because the decision is based on the anticipated value,339

rather than following prescribed rules (an algorithm), the organism’s response is not en-340

tirely predictable from knowledge of the stimulus alone. Low predictability of behaviour,341

especially in novel circumstances, could therefore be an empirical indicator of ABA and342

by consequence, of the usefulness of pain.343

In parallel, recent conceptual work, backed by empirical evidence, shows that sub-344

jective experience also requires an internalised model of the self that is anticipatory345

and involves a comparator between expectations and incoming sensory signals (Key and346

Brown 2018, Key et al. 2021; 2022). Key and coworkers contend that conscious awareness347

is a necessary component of pain (also see Adamo 2019). But, using optimal control the-348

ory applied to both natural and artificial systems, Schneider (2018) demonstrated that349

proactive autonomy is effectively implemented by a combination of an internal model350

and monitoring of internal states, from which emotion-like phenomena spontaneously351

emerge. In his analysis, the internal states being monitored give rise to an integrat-352

ing affect-like signal that provides a “fast and frugal” heuristic for appraisal in action353

selection. That is effectively equivalent to the process enabling ABA.354

2.3 A hypothetical model implementation355

The “free-will machine” from Farnsworth (2017), taken as a hypothetical ABA generat-356

ing system, can be implemented by a neural-hormonal control system that is consistent357

with the concept of pain. In Fig. 3, S represents perception inputs (signals from trans-358

ducers, including nociceptors). They are compared to a model of expected inputs (M)359

by the comparator (-), this model is updated by e.g. Bayesian inference, and the mod-360

elled signals are compared to internally set goals (G) for the signals (desired or expected361

states). The difference between M and G on each channel (E) informs self-modelling362
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about the current state. The result is the formation of a self-model that emerges in a363

particular Q-state. This Q-state may be interpreted as the informational embodiment364

of a quale. The model can generate as many different qualia as it has states: a num-365

ber that increases rapidly with the number of neurons instantiating the model. Note366

the internal model does not have outputs per se, just its Q-states. The self-model has367

access to memories of Q-states, which it seeks to match. It is also multiply connected368

with the rest of the body (soma), crucially including hormonal releasers and receptors.369

The integration of the self-model with the somatic system raises the Q-state to a state370

of affect: an emotional feeling (short term) or a mood (long term). This emotionally371

charged state of the combined model (neurons) and hormone system then modulates372

the drive to perform a finite set of actions (just two illustrated: A1,A2), each generated373

from a pre-programmed routine (R1, R2). The neurons that produce the routines are374

connected with the self-model such that the self-model modulates their thresholds for375

action. For example, a particular Q-state may down-regulate the threshold for A1 and376

up-regulate the threshold for A2, with the result that A1 is performed. Note that atten-377

tion (salience) emerges from the somatic-self-model system as the hormones create the378

strength of the feeling of being in Q (that feeling being the quale). Thus, for example, if379

S is carrying substantial nociception, E will be large and the self-model will emerge in a380

pain Q-state, which will strongly stimulate hormones associated with being in pain and381

a state of suffering (emotional pain) will ensue, which will strongly down-regulate the382

thresholds for escape, guarding and other pain-related behaviours (turning them on),383

while simultaneously up-regulating the thresholds for all other behaviours, effectively384

stopping them.385

This may seem complicated, but it is not unduly demanding of number and inter-386

connectivity of neurons. Greve et al. (2016) showed an artificial neural Turing machine387

could learn to solve a double T maze using just 70 nodes (artificial neurons), providing388

more than 1021 possible states. By contrast, drosophila has ∼100k neurons (Scheffer389
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and Meinertzhagen 2019), each typically with ∼100 synapses (estimate total of 2x107390

synapses (Scheffer et al. 2020)), so even if only 1% of neurons implemented Q-states,391

there could be 10300 of them. The figures are beyond ‘astronomical’ for vertebrates.392
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Figure 3: A hypothetical affect-driven action-selection system giving anticipatory be-
havioural autonomy. Bold symbols and lines represent vector (muti-channel) signals.
S represents perception inputs (signals from transducers, including nociceptors). They
are compared to a model of expected inputs (M) by the comparator (-), this model
is updated by Bayesian inference, and the modelled signals are compared to internally
set goals G for the signals (desired or expected states). The difference between M and
G on each channel (E) informs self-modelling about the current state: the self-model
emerges in a particular Q-state. It has access to memories (either experienced or pre-
programmed) of Q-states, which it seeks to match. It is also multiply connected with
somatic hormonal releasers and receptors. Integration of the self-model with the somatic
system raises the Q-state to a state of affect resulting in an emotionally charged signal
which modulates the drive to perform a finite set of actions (A1, A2), each generated
from a pre-programmed routine (R1, R2). Modulation is achieved via action threshold
modification. Further details in the text. (Blue shading for internally generated (free)
signals on neurons, green for hormonal signals).
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2.4 Anticipation, alone, does not require pain393

Predictive processing is successful in explaining elementary cognition-response systems394

(e.g. Pezzulo et al. 2022). More generally, anticipatory action selection could, with395

relatively small systems, be implemented by a finite state automaton (FSA) leaving396

the organism absent of free choice and therefore not requiring pain. Examples of FSA-397

based anticipatory control systems typically depend on feed-forward models, as in Key398

et al. (2021), or internal models implementing active inference, as in Matsumoto and399

Tani (2020). Here we see the need for at least a memory, which may be elaborated400

into a model of the self, but having action selection still produced through the FSA401

architecture. Even if a global modulating signal (e.g. a neurochemical mediated state402

variable) were introduced to add nuance to the action selection, it could be implemented403

without recourse to agent freedom, still in principle leaving pain unnecessary.404

This is roughly the conception of Key and Brown (2018), who developed a hierarchical405

predictive system in their search for the minimum system necessary to generate subjec-406

tive experience. It consists of a nested pair of feed-forward predictive models, the inner407

model predicting the response to stimulus, the outer predicting the difference between408

this prediction and the realised response, given both signals together with ‘global input’409

from other ‘brain’ areas. Key et al. (2021) argue that animals lacking a recognisably410

equivalent neural processing system would be incapable of the subjective experience that411

is pain. Since Key et al.’s (2021) two-level feed-forward model is only one of several plau-412

sible systems, that is a strong claim. One primary requirement, they claim, is that the413

higher-level prediction (or its error signal) is shared (broadcast) with the global system,414

for they say that the ‘3rd order awareness’ generated by their system is only sufficient415

for ‘pre-conscious’ awareness and it is the global availability of its output that produces416

conscious awareness, though they do not explain how or why. The whole system they417

propose remains reactive, since it does not incorporate any goal or desire and also has no418

action selection component (it was not intended for that purpose). We therefore need to419
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add goal-seeking to obtain a model of experience-driven autonomy. Key et al. (2021) are420

keen to distinguish their model from other predictive processing schemes, principally on421

the grounds that their predictive models are not “embedded within the internal sensory422

processing stream”, claiming that subjective experience cannot be supported without423

that separation of computational tasks. But computationally, it makes no difference424

whether the nested predictors are depicted as within the stimulus-reaction processing425

system or as a separate module sharing signals with it. What really makes the difference426

is the sharing of prediction signals with the global system. Though Key et al. (2021)427

recognise that necessity, they say nothing about what the global system has to do with428

these shared signals in order to generate subjective experience and we are in danger429

of entering an infinite regress in search of the elusive process that generates subjective430

experiences out of all these signals. Key et al. (2021) appear to imply that subjective431

experience is just ‘what it is like’ to have global availability of certain signals, or more432

generally what it is like to be in some particular states. We strongly agree to that –433

no mysterious, even metaphysical, experience-generating processor needs to be added434

to a brain in order to generate subjective experience; it is simply what it is like to be435

in a particular state (what we termed the Q-state). If we are to avoid the homunculus436

fallacy, we must concede this point at some stage.437

In summary, subjective experience has an evaluative component – a normative char-438

acter – arising from the difference between the current state and that sought by a goal-439

directed action selection system. It is therefore part of an anticipatory autonomy system.440

Pain feels bad because it is a state that is far from that desired and it motivates action in441

response. What it feels like to be in pain is the awareness of the gulf between a current442

state and the comfortable (homeostatic) state constantly sought. Thus anticipation is443

necessary for pain, but only jointly with goals and a global-level evaluation.444
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2.5 Autonomous evaluation necessitates pain445

The key difference between an automaton system and a free autonomous agent is that in446

the latter actions are selected based on their evaluation in a common currency. It is the447

independent evaluation, a computational process isolated from perception-response, that448

provides the freedom of free autonomy. Evaluation is subjective and context-dependent;449

it cannot be replaced with a FSA algorithm, not only because it entails an indeterminate450

number of states, but because it is necessarily a faculty of the whole organism: the451

only level to which we may accord the status of freedom. An organism that is a free452

autonomous agent is able to make free choices because, as an integrated whole, it is453

the embodiment of the information entailed in making the choices (this is an important454

matter of attribution). These choices are not determined by exogenous causes, nor by455

immutable internal causal structure (an inbuilt algorithm) in any component part of456

the organism; instead they are determined by the goal-seeking intention of the unified457

whole of the organism. This optimisation can be termed the ’will’ of the organism only458

because the goal is instantiated at the highest level of causal organisation (Farnsworth459

2018; 2017). The goal is the maximum of a global utility function which, by natural460

selection, should coincide with Darwinian fitness, but for the individual organism it461

may be represented by an effect-like signal on the pleasure/ pain axis as described by462

Hoffmann (2003) and (Schneider 2018) (noting this may be a simplification since pain463

and pleasure are thought to be separate systems (Pietri et al. 2013)).464

Evaluation requires a universal currency to compare the value of each option regard-465

less of its nature, similar to the economists’ notion of ‘utility’, which enables comparison466

of cinema tickets with cheese. This universal currency needs the properties of valence467

(good/badness) and intensity (activation or arousal level). These are provided by the468

‘emotional space’ defined by Russell (1978) and elaborated in Russell and Barrett (1999).469

This idea of evaluation on valence and arrousal axes of a universal currency is compatible470

with the cognitive appraisal theories reviewed in Scherer et al. (2001). More recently, the471
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evaluation component of emotion has gained broad acceptance within (human) emotion472

theory, brought together under an inclusive definition by Scherer (2022):473

474

... “emotions 1) consist of an episodic process in response to a perceived event or situ-475

ation of major significance, 2) which is characterised by recursive causal effects (forward476

and backwards) between several components that include the evaluation of the event in477

terms of its significance for the goals and values of the individual, 3) creating physio-478

logical reactions, motor expressions, and action tendencies and 4) that this process is479

partially accessible to consciousness, resulting in feelings that 5) can be categorised and480

subsequently labelled by the individual in terms of its subjective conceptual structure”.481

482

The two-dimensional circumplex model of affect (Russell 1978, Posner et al. 2005)483

is the antithesis of the so-called ‘basic emotion’ model in which emotions are discrete484

separate sensations. The circumplex model has gained considerable empirical support485

and the idea that a wide range of emotions can be constructed from just two axes of486

latent variation (valence and arousal) is commonly invoked in human psychology, though487

contested (Ortony 2022). The practical (fitness) value of simple emotions has been shown488

using reinforcement learning in artificial intelligence systems, which can be enhanced489

by incorporating simulated emotions into action selection (Sequeira et al. 2015). This490

integrates current perception signals with memories and model expectations to produce491

an autonomous self-centred decision-making process. Affective signals are used as an492

overall hedonic objective function to be maximised, using both current and anticipated493

states for possible actions in the context of action selection. A typical arrangement494

involves a joy vs. distress axis, which may be further enhanced with a hope vs. fear495

axis, identified as the anticipation of joy or distress, respectively (Broekens et al. 2015).496

At least for the present purpose, the single dimension of a valence is very suitable497

for the simplest motivational signal: the contrast between pleasure and pain, with their498
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associated general response of approach and withdrawal. In short, a single general signal499

of valence is enough to provide for the affect aspect of pain (and pleasure) and to function500

as a universal comparator of actions available for selection suggested by Hoffmann (2003).501

Further, we cannot ignore the obvious parallel between a universal signal of valence and502

the widely acting neurohormones, which are taken by many as an objective indicator of503

psychological stress or arousal, and in animal studies as a surrogate for pain: cortisol504

for vertebrates (Cerqueira et al. 2021, Stafford and Mellor 2005, Wagner 2010) and505

hyperglycaemic hormone for invertebrates, such as crustaceans (Chang 2005, Elwood506

and Adams 2015). Autonomous evaluation can be implemented using such hormones as507

a universal and integrating motivational quantity that is continuously variable and gives508

effect to the state of the internal model: in particular the feeling of pain.509

2.6 Origins of pain and primary consciousness510

Our proposal suggests that pain is only adaptive for those animals able to make au-511

tonomous anticipatory decisions. If pain is considered a part of primary consciousness,512

then it cannot precede the evolutionary origins of consciousness for which Feinberg and513

Mallatt (2013) and Ginsburg and Jablonka (2019) provide complementary accounts. But514

evidence for primary consciousness is also very hard to obtain; e.g. Suzuki (2021) found515

insufficient evidence to determine if the consciousness criteria provided by Feinberg and516

Mallatt (2013) and Ginsburg and Jablonka (2019) applied to the first vertebrates, based517

on studies of extant cyclostomes (jawless fish). According to our present hypothesis,518

pain is contingent upon free decision-making, the hallmarks of which, listed above, may519

be more accessible to empirical testing. Of these the most diagnostic may prove to be520

state-dependent trade-offs under noxious stimulus. As we noted earlier, such trade-offs521

could in principle be brought about by a very complicated automaton system, but more522

simply and flexibly produced by a proactive affect-driven autonomous decision system523

(consistent with ABA). The requirements for this coincide with those for “unlimited524
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associative learning” (UAL), which was identified as the transition marker for the evo-525

lution of consciousness in Ginsburg and Jablonka’s (2019) account. As (Birch et al.526

2020a) indicates: the requirements for UAL, in turn, coincide with those for sentience:527

1) global accessibility and broadcast; 2) binding/unification; 3) selective attention and528

exclusion; 4) intentionality; 5) integration over time; 6) an evaluative system; 7) agency529

and embodiment and 8) registration of self/other distinction. The self-model required for530

ABA enables self/other distinction and provides for integration over time. The agency531

required for ABA is provided by an evaluation system that is not merely an automaton532

implementation (this point being emphasised by Ginsburg and Jablonka 2019). It also533

requires the integration of the model with evaluation system and our suggestion of hor-534

monal mediation fulfils that role as well as fulfilling global accessibility, broadcast and535

binding/unification requirements and embodiment. Thus ABA also shares the require-536

ments for sentience. This means that state-dependent trade-offs under noxious stimulus537

could provide a valuable surrogate in the search for pain, and more general sentience, in538

extant organisms.539

3 Empirical support for ABA implying the need for pain540

The function of pain, distinct from nociception, is identified by Sneddon (2009) as en-541

abling an organism to “quickly learn to avoid the noxious stimulus and demonstrate542

sustained changes in behaviour that have a protective function to reduce further injury543

and pain, prevent the injury from recurring, and promote healing and recovery”. In other544

words, pain should elicit persistent changes of behaviour through modulation of action545

selection. For example, we see conditioned place avoidance for areas associated with546

noxious stimuli in shore crabs (Magee and Elwood 2013) and octopuses (Crook 2021).547

Further, octopuses that could not avoid noxious stimuli (acetic acid injection) preferred548

areas associated with a local anaesthetic. Other long-term changes in behaviour observed549
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after noxious stimuli include alterations of shell preference in hermit crabs, which last550

at least 24 hours following electric shock (Appel and Elwood 2009, Elwood and Appel551

2009) and the onset of anxiety-like states in crayfish after shock (Fossat et al. 2014),552

which are also seen in fish (de Abreu et al. 2020) and amphibians (Brown et al. 2013).553

Anxiety-like states are usually associated with serotonin (Best et al. 2020, Curran and554

Chalasani 2012), but do not alone imply pain; e.g. a simple (algorithmic) mechanism for555

their manifestation, requiring only two neurons, has been found in C. elegans (Eliezer556

et al. 2019), but without evidence of evaluation. Anxiety-like states do demonstrate557

anticipation, and generalised modulation of action selection, but could, in principle, be558

generated by an automaton. So though the behavioural observations above are consistent559

with expectations of pain in a wide range of species (Sneddon et al. 2014), they do not560

conclusively support our hypothesis concerning autonomous and anticipatory behaviour.561

That hypothesis broadly suggests that pain is only useful, and hence likely to be present,562

in animals that can make a free choice between available responses in the presence of a563

noxious stimulus. To test this, we would need evidence of 1) mental models of the self564

and the environment to support anticipation; 2) flexibility in behavioural responses to565

stimuli (showing that options are available); 3) proactive choice and forward planning566

(actions based on anticipated consequences, rather than just the current state) and 4)567

free choice of response to noxious stimuli (not algorithmically pre-programmed) that is568

rational rather than random (shown by e.g. state-dependent trade-offs).569

3.1 Models of self and the environment570

Models of self presumably developed early in evolution with examples emerging in a571

wide range of multicellular animals (Jékely et al. 2021). The most basic of these models572

involve reafference, which is the term given to the ability of an animal to discriminate573

between sensory changes due to self-movement and those due to environment change574

(Jékely et al. 2021). This ability is important because the two are likely to have very575
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different meanings for the animal. For example, an object taking up more space on the576

retina (or compound eye), i.e., a looming stimulus (Temizer et al. 2015), could be due577

to the animal approaching the object or the object approaching the animal. In the first578

case there is little risk whereas in the latter case, looming might indicate danger to the579

animal. But reafference also applies to a wide range of stimuli such as flow of water over580

the body surface due to own movement contrasted with that due to environmental flow,581

or to deformation of the body due to own movement or to some external force. That582

is, the animal has a model of self, and largely disregards inputs due to self-movement,583

whereas those due to external changes receive attention.584

Animals also form models about the environment, demonstrated by the classic ex-585

periment in which chicks anticipated the timing of a light being switched on and off at586

regular intervals, showing startle responses when it turned off early or late (Broom 1968).587

Anticipatory modelling is of course central to predictive processing and active inference588

theories and the generation of associative learning. When animals learn about associ-589

ations between two environmental changes, as in classical conditioning, or between an590

action and subsequent environmental event, as in instrumental conditioning, they form591

mental models that allow distinction between chance coincidence and true causal rela-592

tions between neutral events and subsequent events of biological significance (Dickinson593

1980). This process can be complex, even in invertebrates such as insects (reviewed by594

Perry and Barron 2013). Numerous groups of cells and circuits, and their interactions,595

have been identified as involved in learning about rewards and punishments. Further,596

the roles of octopamine and dopamine in reward and punishment learning have been597

discovered, as have more complex interplay between these two control circuits. Of par-598

ticular interest, however, is the suggestion that with rewards there are subjective feelings599

of “liking” as separate from “wanting”, and again separate but interacting circuits seem600

to be involved (Perry and Barron 2013). That is, the hedonic value of an unconditioned601

stimulus plays a role in the learning about a conditioned stimulus, such as an odour,602
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and how it predicts the arrival of the unconditioned stimulus, such as sucrose or a sweet603

substitute. Hedonic value may also play a part in avoidance of punishment, such as elec-604

tric shock. The conclusion from these studies, and many others, is that animals gather605

information about themselves and about the environment and use these for building606

models that show expectation of future events so that behaviour may be modified to607

better gain rewards and avoid risks. These models of self and environment are key to608

the success of metazoans.609

3.2 Flexibility of responses to stimuli610

Identifying flexibility of response, (following the classical definition of free will: “able611

to do otherwise”) depends on there being available response options and a demonstra-612

tion of more than one response to the same stimulus from the same individual. The613

first criterion can be established within a species by observing inter-individual differ-614

ences in response, because such differences would result from differences of internal state615

among individuals, i.e. a complex of genetic, developmental and accumulated experi-616

ences (Stamps 2016). Appel and Elwood (2009) demonstrated this with hermit crabs617

undergoing a standardised noxious stimulus (i.e. with minimum variation in magnitude618

and site of application). Crabs were induced to occupy empty gastropod shells wired619

to apply electric shocks to the abdomen of the crab within its shell. Of the 123 crabs620

that received a standardised shock treatment 61 evacuated the shell and 29 of those621

groomed and tended to their abdomen at the site of the shock application. Four crabs622

attempted to climb the wall of the observation chamber and three engaged in shell-623

rapping, an activity normally seen in fights for ownership of shells. After evacuation, 57624

crabs re-entered the shell, leaving four that stayed away from it. None of these activities625

were observed in unshocked controls. Evidently the observed behaviours show a variety626

of individual responses to the same noxious stimulus, demonstrating options for action627

selection.628

30



To identify flexibility within the individual (endogenous placticity), we must first dis-629

tinguish between sources of variation in their response. We reject random as it negates630

autonomy. Developmental shifts (maturation and e.g. role differentiation in social in-631

sects) do not indicate coincident options for the animal (discussed by Jeanson 2019).632

Changes in response to a change of the environment might be generated by an automa-633

ton algorithm, so not free. For example, (Czaczkes et al. 2018) observed task switching634

between exploration and exploitation in forager ants in a T-maze with sucrose rewards635

at the end of each arm. Following a period of training in which ants learned to associate636

reward levels with various cues, ants were free to choose either arm over multiple trials.637

They showed little switching between arms, irrespective of their reward levels as long638

as rewards remained constant. When reward levels, along with associated cues, in both639

arms were simultaneously increased, or decreased, then switching rate also increased be-640

tween trials, showing a change from exploitation to exploration behaviour. If ants have641

an exploration algorithm, but otherwise default to exploitation, then a simple threshold642

switch, sensitive to reward change (Wilson 1976), would suffice to produce this apparent643

behavioural flexibility. Conversely, within-individual changes of behaviour, without a644

change in environmental stimulus, may result from learning, in which case internalised645

information gained by the organism, not inbuilt, is the source of change; hence free-646

choice flexibility is demonstrated. Jeanson (2019) discussed learning-dependent flexi-647

bility in social insects, e.g. that in ants able to perform multiple tasks, a successful648

foraging experience can increase the likelihood of repeated foraging (Ravary et al. 2007).649

Representing cephalopods, Chung et al. (2022) showed that cuttlefish changed their re-650

sponse to ambiguous prey choice following the experience of receiving an unexpected651

food reward. They interpreted this change as foraging strategy selection mediated by652

an internal state they identified as an emotion-like state. Magurran (1993) reviewed a653

substantial body of evidence of context-dependent behaviours within teleosts, not least654

the ability of male guppies to choose between overt display for a mate, or “sneaky” mat-655
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ing tactics. Most supportive of ABA, Earley et al. (2013) found that mangrove killifish656

(Kryptolebias marmoratus) ‘perceive’ their own fighting ability (implying a self-model)657

and they “adjust contest strategy” when that perception is updated following wins or658

losses. The authors identified this behavioural flexibility with changes in three hormones,659

concluding it is “modulated by internal state”.660

3.3 Proactive choice and forward planning661

Examples of forward planning in action selection are available among invertebrates (El-662

wood 2022). One such study used terrestrial hermit crabs and allowed them to walk663

along a corridor with obstacles that partially blocked the passage of the crab’s shell664

(Sonoda et al. 2012). The obstacles varied in the degree to which they made passage665

difficult. However, crabs were proactive in this task, turning their shells to avoid the666

obstacle before encountering it. Further, they turned the shell to a greater degree if667

the space between the shell and obstacle was narrow. When crabs had plastic plates668

attached to the shells making the obstacle course more difficult, they turned the shell to669

a greater degree on their first attempt, enabling pasaage without the plastic extension670

colliding with obstacles. The behaviour (degree of turning) was selected prior to colli-671

sion experience and in response to a novel situation, thus showing proactive selection of672

behaviour for optimal outcome. Other examples with hermit crabs showing proactive673

flexible responses are discussed in Elwood (2022). Ants following cues that predict a674

valuable reward show more pheromone marking of the trail than do those following cues675

to a weaker reward, which again suggests forward planning (Czaczkes et al. 2018). Spi-676

ders that live in a complex 3-dimensional environment can detect prey from a distance677

but reaching the prey might not be achieved in a straight line. Spiders have been seen to678

plan the route and on occasions might move further away from the prey in order to get679

to a branch that will then lead them closer (Tarsitano 2006). All together, action choice680

with forward planning has been documented for arthropods. Among vertebrates, these681

32



faculties are well known, for example through reversal learning experiments, especially682

with birds (e.g. Bond et al. 2007).683

3.4 Non-algorithmic, selection of response to a noxious stimulus684

Probably the best evidence for proactive choice in response to a noxious stimulus comes685

from examples of trade-offs between avoidance of a noxious stimulus and any other goal686

(e.g. Balasko and Cabanac 1998). Sneddon (2019) reviewed evidence of this in fish (and687

cephalopod) species. Millsopp and Laming (2008) found that goldfish (Carassius aura-688

tus), which they trained to feed in one region of an experimental aquarium, and where689

they were subsequently subjected to electric shocks, would spend more time in this feed-690

ing/shock zone the more food-deprived they were, and that this trade-off shifted away691

from feeding attempts towards escape as the shock intensity was increased. Crook et al.692

(2014) showed direct fitness benefits for squid (Doryteuthis pealeii) as they put extra693

effort into escape from predator cues when they were experimentally injured, leading694

to an almost doubling of survival rate compared to those that had been anaesthetised695

during the injury process. Hermit crabs evacuate their shell after an electric shock with696

a probability that depends on the quality of the shell (Elwood and Appel 2009) and697

also the presence of a predator odour Magee and Elwood (2016). Thus, these crabs698

displayed a flexible trade-off when responding to a noxious stimulus with respect to699

keeping a high-quality shell and avoidance of predation. Further, a recent study on700

bumblebees demonstrated a trade-off between avoiding a high temperature and obtain-701

ing a high-quality food source, with the bees using learned colour cues for their decisions,702

indicating both flexible responses and associative learning based on contextual informa-703

tion (Gibbons et al. 2022b). These demonstrations of trade-offs suggest proactive choice704

following noxious stimuli. It is doubtful if they could result from an inbuilt algorithm705

because of the complexity required and because they seem to occur in novel situations.706

Further, some authors have put considerable weight on trade-offs as a key criterion of707
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pain (Crump et al. 2022). Intriguingly, Puri and Faulkes (2015), who examined re-708

sponses of crayfish to a heat stimulus from a soldering iron that touched the animal,709

showed (in videos published with their paper) that some animals grabbed the shaft of710

the soldering iron in response. Evidently the animal was selecting a response that was711

dependent upon available information. This unexpected protective response replaced712

the reflex withdrawal, seen in some individuals, with a co-ordinated attack that seems713

to use freedom of action-selection to manifest.714

3.5 Evolution of pain experience715

So far, there is evidence for pain in three major phyla, the chordates (Sneddon et al.716

2003), molluscs (Cooke 2021) and arthropods (Elwood 2019). These three phyla arose717

during the Cambrian explosion and the most recent common ancestor for these is likely to718

be a free-living worm-like organism from about 530-550 million years ago (Elwood 2011).719

The parsimonious explanation for the evolution of pain in the three phyla is that there720

was one evolutionary step that occurred in or before the most recent common ancestor.721

Against this, evidence for pain is restricted to specific groups, such as the cephalopods722

within molluscs, the decapod crustaceans and some insects and arachnids within the723

arthropods and the vertebrates within the chordates. Evidence for pain among many724

phyla remains weak or absent, but that might simply reflect lack of relevant studies.725

However, a patchy distribution of pain might occur if pain was lost in some lineages.726

For example, taxa that evolved from a free-living form to a sedentary lifestyle may have727

reduced their behavioural choices and, thus, there may be no need for free choice and728

pain. For example, bivalve molluscs, such as oysters and mussels, which are fixed to hard729

substrates and therefore limited in how they might respond to noxious stimuli, might730

not benefit from a pain system.731

We might reasonably expect pain to be found in basal groups of these three phyla but732

within the arthropods, identifying basal groups with extant examples has proved difficult733
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(Edgecombe and Legg 2014). Because pain has been suggested for the decapods, we734

should examine basal crustaceans, for which ostracods or branchiopods represent extant735

early taxa, but we are not aware of any studies that might indicate sentience in these736

groups. There is also a paucity of relevant studies on primitive insects (Gibbons et al.737

2022a). Basal molluscs, such as the worm-like aplacophorans, provide no evidence for738

sentience because these are deep-sea burrowing animals and we are not aware of suitable739

studies on live specimens (Wanninger and Wollesen 2019). There is more information740

on early chordates, for example the protochordates, including Amphioxus (Lacalli 2022).741

There has been detailed comparison of the CNS of Amphioxus with those of vertebrates.742

This indicates that the brain of Amphioxus has some of the areas found in vertebrates,743

but Amphioxus lacks the major areas involved in the sensory experience of vertebrates.744

Lacalli (2022) concludes that sentience developed within the vertebrates rather than745

being a feature of the protochordates.746

In general, the evidence points to the less parsimonious multiple origins of sentience747

and pain. One reason for this is suggested by Lacalli (2022), specifically for the chordates,748

but which might apply to the molluscs and arthropods. Early groups in these taxa lack749

well developed sensory systems. For example, light-sensitive cells may be found in early750

forms, but they likely only provide information about light levels. Whilst they might751

provide warning due to the shadow of a predator, they do not provide an image that came752

with the evolution of eyes. Eyes have evolved in some groups of molluscs, vertebrates and753

arthropods, and although these differ in composition, they are able to form images of dis-754

tant objects and thus gather vast amounts of information (Godfrey-Smith 2020). If that755

is processed efficiently, it may be used to predict what will happen next. For example,756

improved sensory ability provides information about potential mates, potential competi-757

tors, potential predators and a myriad of other environmental changes that might impact758

fitness. This improved sensing is not restricted to vision but involves other modalities759

for which there has been marked development in the appropriate sense organs. The inte-760

35



grated processing of this much larger amount of information has necessitated a parallel761

development of nervous systems. This was particularly likely in those animals that devel-762

oped a highly mobile predatory lifestyle and the requirement for swift decision-making.763

Thus development of special senses leading to a substantial enlargement of information764

and potential action space may have stimulated the parallel development of AUL and765

sentience. In engineering terms, the state-space of sensory information and potential766

actions completely outstripped the capabilities of automaton-based systems, necessitat-767

ing autonomous affect-driven decision-making. We suggest that the resulting flexibility768

of behaviour and the vastly improved ability to predict has brought about the require-769

ment for pain in the context of affect-driven decision-making. That is, pain may be770

a consequence of mobility and behavioural choice (anticipatory behavioural autonomy)771

that we see in fish (and other vertebrates), cephalopods and decapods and some insects772

and arachnids. Animals outside of these specific groups, but with similar sensory and773

behavioural properties, may be considered likely to also experience pain. One suggestion774

for this is the crustacean group of stomatopods, commonly called mantis shrimps, which775

so far appear to have been excluded from a consideration of pain-like states. Based776

on our arguments, we might also expect to find evidence for pain in other arthropods777

such as spiders, scorpions, millipedes and centipedes, and we encourage studies of such778

animals.779

4 Conclusions780

We have considered pain as an experiential phenomenon emergent from the neural pro-781

cessing of nociceptive signals in the context of a self-model which is integrated with a782

neurohormonal system that provides emotional valence. Pain causes suffering because783

the pained state is remote from the goal (pain-free) state. In this view, the biological784

systems needed to cause suffering are no more than those needed to cause pain, so where785
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pain is established, suffering is likely too. We consider the term psychological stress to786

be equivalent to suffering and note that psychological stress is the primary measure for787

animal welfare studies and normally quantified by surrogate stress-hormone assays.788

Our proposition can be put rather simply: pain is adaptive only for organisms capable789

of anticipatory behavioural autonomy (ABA), which is the freedom to choose among790

available behaviours based on model-derived anticipation of the outcomes, so pain could791

reasonably be attributed to any organism capable of that. The hypothetical system792

we propose for achieving ABA is just one of presumably many biologically plausible793

systems, but the components and architecture of their assembly into a working action-794

selection system are all testable. It is consistent with previous models of anticipatory795

behavioural control (Hoffmann 2003), the imperativist account of pain (Martinez 2015),796

the ‘organisational approach’ (Mossio et al. 2009) explanation of autonomy (Bich and797

Damiano 2012, Froese et al. 2007, Farnsworth 2018), proposed hallmarks of consciousness798

(Ginsburg and Jablonka 2019) and empirical findings in neuroanatomy Barajas-Azpeleta799

et al. (2021), Jiang and Pan (2022) and ideas about animal behaviour Budaev et al.800

(2020), Clayton et al. (2003), Crump et al. (2022), Elwood (2019), Ponte et al. (2022),801

Sneddon et al. (2014). One advantage of the concept we propose is that it succeeds in802

explaining apparent free choice as well as the role of emotional pain (suffering) in the803

control system of organisms possessing it. Another important advantage is that it is in804

principle testable using animal behaviour experiments.805

Appendix806

On the philosophical analysis of pain807

Corns (2018) reviewed some of the main currents in the modern philosophy of pain,808

especially the evaluativist versus imperativist debate (we note that earlier perceptual809

and sense-datum theories have fallen largely obsolete (Aydede 2019)). The evaluative810
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thesis holds that pain is a representation of bodily damage that is experienced and811

interpreted normatively (Jacobson 2019, Bain 2013). Being strictly subjective and phe-812

nomenological (essentially perceptualist), the evaluative thesis is not well connected with813

mechanistic explanation, nor does it easily deal with empirical evidence showing rather814

weak correlation between bodily damage (or disturbance) and pain (Wright 2011, Gar-815

land 2012). Though the perceptualist approach is probably consistent with the sensory-816

descriminatory aspect of pain, for many, especially imperativists, it remains unclear how817

it can address the affective-motivational aspect of pain. However, that criticism was818

rejected by Bain (2013) and was addressed by psycho-functionalism (Aydede and Fulk-819

erson 2019) which claims to explain all aspects of pain by combining features of both820

evaluativist and motivationalist accounts. The simple (and common) idea that pain is821

an informing signal that is accompanied by an affective state related to its normative822

valuation is not easy to explain in terms of biological mechanisms or even as an evolu-823

tionary adaptation. We believe the imperativist account, in which pain is a command824

for action intended to avoid it (Klein 2007; 2015b) is more useful to understanding the825

biological basis for pain.826

Casser (2021) explains that imperativists believe “there is no biological evidence to827

support the notion that pain was originally selected for its informative capacities, nor828

that it currently contributes to the fitness of organisms in this specific capacity”. Ac-829

cording to the imperativist account, pain, he says, like other “homeostatic sensations,830

such as hunger or thirst, [is] best interpreted as an action-guiding, imperative signal831

that serves the biological function of bringing about appropriate protective behaviours”,832

citing leading proponents of the imperativist theory: (Martinez 2011, Klein 2015a, Mar-833

tinez and Klein 2016). Although Casser (2021) also warns that imperativists “need to834

worry about the adequacy of their assumptions concerning pain’s biological function”,835

it seems he finds more support for pain as an imperative than as an informant.836

Most studies of pain so far have concentrated on perception and attempts to explain837
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it as a higher level of cognition beyond nociception (Aydede 2019). As such, pain is a838

construct of the mind. This idea gains support from reports of vicarious pain, in which839

some humans experience the pain of those they observe (Osborn and Derbyshire 2010),840

a phenomenon taken to be part of mirror-touch synesthesia (Banissy and Ward 2013).841

Pain, if considered as an example of qualia, is explained by proponents of active inference842

and predictive processing theories as an ‘intermediate-level construct’ (statistical model)843

of the world used by the mind to account for the cause of perceived signals (Clark844

et al. 2019), which may include the whole neuro-endocrine-immune system in ‘embodied845

predictive processing’ (Kiverstein et al. 2022).846

Such cognitive constructs are described as models of the self and the environment and847

in general, models are instantiations of information about objects and their, especially848

causal, relationships (Rosen 1985). The necessary information can be innate (in the case849

of the algorithmic control system); otherwise it must be acquired by the organism, i.e.850

learned. Of particular relevance to pain, reinforcement learning (aversion) is ubiquitous851

among animals with a nervous system and can be achieved by direct stimulus-response852

modulation (Elwood 2019). Proponents of predictive processing and active inference853

theories (following Friston et al. 2013) consider brains (presumably nervous systems in854

general) as prediction engines that use learning, in the form of Bayesian updating of855

a statistical model, for determining the behaviour of the organism. In AI engineering,856

adaptive learning systems have been augmented by incorporating a self-representing857

model to enable planning (additional to adaptive response). This self-model, which858

is internal to the system, provides a means of anticipating the outcomes of different859

actions, extending anticipation of stimuli to become evaluative action selection (Butz860

and Hoffmann 2002). It is these systems that we take to be the primary reason for pain861

being adaptive.862
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On Autonomy863

The idea of information controlling the behaviour of a system derives from a theory864

of physical causation, which is able to account for the unique attributes of biological865

systems: the appearance of downward causation and nested hierarchy (see e.g. Jaeger866

and Calkins (2012), Noble (2012)) and most relevant here, the emergence of autonomy867

from circular causation (Bich et al. (2016), Farnsworth (2018), Froese et al. (2007),868

Marshall et al. (2017), Moreno and Mossio (2015), Varela (1979)).869

Autonomy is achieved through the information embodied within the organism con-870

straining physical forces that are produced by it (Farnsworth 2022). Agent causation871

further implies a degree of causal isolation that is probably unique to life (Friston et al.872

2013, Juel et al. 2019, Albantakis et al. 2019), the philosophical implications of which873

are discussed by Kauffman and Clayton (2006), Meincke (2019), Mossio et al. (2013).874

Three levels of autonomy can be identified using an ‘organisational approach to875

biological systems’ (Mossio et al. 2009): a) none (system states are entirely determined876

by the environment, as in most natural systems); b) automaton (system states are at877

least partly determined by internal (embodied) control, as in clockwork automata, which878

may additionally be predetermined by a decision-making algorithm, as in assembly-line879

robots) and c) proactive autonomy (system states are at least partly determined by880

internal control that is a-priori indeterminate and to that extent free). All life, by virtue881

of being closed to efficient causation (Rosen 1991) has at least the automaton level, e.g.882

the automaton algorithm has been identified in plants (Kawano et al. 2012) and bacteria883

(Lan and Tu 2016). The idealised behaviour of an organism in a Skinner box coincides884

with that of an automaton having Bayesian updating, but only because it constrains885

the system to make a necessary causal connection between input (stimuli) and output886

(behaviour). However, many organisms, free of such artificial constraints, are able to887

select and enact behaviours that are not causally connected to the stimulus presented.888

Such behaviours may be responses to internal states, or even the result of high-level889
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cognition, e.g. the organism may play with the apparatus or seek attention in some890

way. These are displays of autonomous behaviour, in that they are not entirely caused891

by exogenous stimuli and are therefore not a-priori predictable from a knowledge of the892

inputs.893
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