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a b s t r a c t

Biodiversity is a measure of the total difference within a biological system. It is understood to arise at
genetic, species and multiple levels of community organisation, hence is multidimensional in nature.
Biodiversity indices have proliferated in attempts to capture this complexity but may now have con-
founded it. Here we attempt a reduction to the minimal set of metrics needed to describe biodiversity
(often by default taken to be species richness). 1000 model communities with realistic taxonomic com-
position were synthesised using databases of marine benthic species. A battery of 19 biodiversity indices
were calculated for every community and analysed by PCA to show inter-dependence and sensitivity
to variation in taxonomic (a surrogate for genetic), functional (based on ecological roles) and structural
(based on species abundance) diversity. We found the three major axes of biodiversity were (a) structural
unctional
hylogenetic diversity
ommunity composition
axonomic modelling

complexity, and (b) two different mixtures of taxonomic and functional diversity: it was well approx-
imated by a three-dimensional space of these variables. A scalar distance from the origin of this space
could serve as a single valued summary where needed, for example in economic valuations. The most
widely used single biodiversity measure – species richness – missed 88.6% of the diversity, emphasising
the importance of additional characters and the need for species databases to record functional traits,

in co
presence and abundance

. Introduction

Two questions motivated the work presented here: firstly,
an an optimal measure of biodiversity be constructed, and sec-
ndly, how closely is it approximated by the most commonly used
easure—species richness? By optimal we mean capturing the
aximum information about diversity in a compact form: we seek
measure with the maximum information density.

There is already plenty to choose from. The rapidly growing
iodiversity literature offers a substantial ‘lexicon zoo’ (Marcot,
007) of indices, leading some commentators to refer to a confusion
f meaning (Hamilton, 2005) and to the presence of ambiguities
Weesie and van Andel, 2003). Biodiversity is often taken as a
onstellation of meanings which can never be captured by a sin-
le number (Purvis and Hector, 2000; Mayer, 2006; Failing and
regory, 2003). This diversity of meanings encompasses a diversity
f measures, each of them intended to represent some facet of total
iodiversity. Examples include genetic and phenotypic variance,
pecies numbers, ecosystem structural properties and patterns of
unctional heterogeneity. This proliferation calls us to rationalisa-

ion and synthesis: to identify which features of biodiversity are

athematically independent and thereby to find the irreducible set
f metrics which must be included to encompass total biodiversity.

∗ Corresponding author.
E-mail address: k.farnsworth@qub.ac.uk (K.D. Farnsworth).
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mmunities, and phylogenetic information.
© 2012 Elsevier Ltd. All rights reserved.

Implied in that goal is the identification of redundant metrics; those
which are so mutually correlated that any one of them may be taken
to approximate the others.

One possible guide to the ‘lexicon zoo’ comes from recognising
the hierarchical structure of biological diversity, ranging from the
variety of genes within and among organisms to the variety of com-
munity structures, e.g. foodwebs. This immediately implies a way
to categorise existing biodiversity measures by the organisational
‘level’ to which they refer. At each level, we can identify metrics
by the specific kind of biological difference that they measure: we
term this the ‘descriptor’. With level (L) and descriptor (D), existing
and hypothetical biodiversity measures can be classified in a (D|L)
permutation matrix, each element of which is a different combina-
tion of the kind of biological diversity and the organisational level
of its measurement. This constitutes a formalisation of the influen-
tial ideas presented by Noss (1990), based on primary attributes
recognised by Franklin (1988), who incorporated the descriptor
categories: composition, structure and function into a hierarchy
of indices.

An obvious way to examine the multitude of biodiversity indices
is by comparing candidate measures from a set of field-observed
communities using multivariate statistics (e.g. Gallardo et al.,
2011). A broad analysis would require a large set of studies follow-

ing a consistent protocol, with matched sampling effort, spanning
a wide variety of communities. In practice, there is only a little
comparative data beyond species richness and abundance (Lamb
et al., 2009; Geburek et al., 2010; Péru and Dolédec, 2010; Guo et al.,

dx.doi.org/10.1016/j.ecolind.2011.12.016
http://www.sciencedirect.com/science/journal/1470160X
http://www.elsevier.com/locate/ecolind
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Table 1
A nine-level hierarchy of biocomplexity. Left column names the level of organisation
and right column gives examples of the components from which diversity is created.
Diversity at the community level arises from aggregating over all lower levels to form
measures of temporal and spatial variation; genetic diversity generates all higher
levels, notably by directing functional diversity.

Organization level Diversity components

Ecological communities Aggregate measures: ˛, ˇ, �-diversity
Populations Abundances
Multi-cellular organisms Species and their phylogenies
Tissues, organs and organ systems Cell-interactions and organ function
Cells Cell types and functions
Sub-cellular structures Organelle specialisations
Molecular networks Biochemical functions
86 O. Lyashevska, K.D. Farnsworth / E

010; Gallardo et al., 2011; Rubio et al., 2011), though an increasing
ecognition of functional (Mouchet et al., 2010), phylogenetic, and
axonomic (Lopez-Osorio and Miranda-Esquivel, 2010; Schweiger
t al., 2008) diversity could change that.

Inconsistency among study designs (a few exceptions noted
bove) strongly limits any attempt to describe relationships among
eld measurements of biodiversity, so comparative meta-analysis
as typically used simulated data instead. Studies using simu-

ated data have sought to reveal relationships among indicators
f taxonomic diversity (Clarke and Warwick, 1998, 2001), func-
ional diversity (Villéger et al., 2008), species and genetic diversity
Vellend, 2005) and phylogenetic diversity (Schweiger et al., 2008;
ipperess et al., 2010). Here we unite these individual categories of
iodiversity into one analysis examining the correlation amongst,
nd sensitivity of a set of taxonomic, structural and functional
iversity indices simultaneously. This is not a trivial task as it
equires realistic relations, among diversity categories, to be built
nto the test-data. Previous studies had examined indicators against
nstructured random assemblies of ‘species’, rather than realistic
imulations of communities. This severely limited the possibility
f finding relations that cut across the descriptor categories of
ranklin (1988) or those operating at different levels of biological
rganisation. To enable possible relationships among very different
spects of biodiversity to emerge, we built artificial communities
ith taxonomic structures and distributions of species traits that

tatistically matched an example of a near-shore temperate marine
cosystems.

Given the multidimensional nature of biodiversity, our search
or the maximum information density involves defining a necessary
nd sufficient (irreducible) set of metrics which best approximate
otal biodiversity. This practically amounts to an ordination among

easures, constructing principle axes of variation and interpret-
ng them in biological terms. A single measure estimate may then
e calculated as a distance metric in the reduced space of princi-
le axes. Comparison between species richness and this composite
easure will give an indication of how much biodiversity is missed

y species richness.

. Theory

Behind the myriad ways of measuring and describing biodiver-
ity there is a simple unifying quantity. The word ‘biodiversity’
iterally means the diversity within a biological system, where
iversity quantifies the total difference among the system’s parts.
his definition coincides with the ‘diaphoric definition of data’
Floridi, 2005) as the foundation of information, demonstrating the
quivalence of biodiversity to information: not information about
he system, but the natural information contained within it. Biodi-
ersity, thus defined, is too much to be directly measurable; only
spects of it may be estimated by empirical indices, which may be
sed for comparing diversity among systems.

Biodiversity as ‘difference’ measures the total difference among
he components of a biological system, where differences are
efined on a set of axes, coinciding with the set of ‘descriptors’ D.
e can envisage nine ‘levels’ L over which these descriptors may
easure (see Table 1). Though there is no reason why in principal
e should not measure, e.g. cell type diversity within an ecological

ommunity, in practice only the top three levels appear explic-
tly in the biodiversity literature, the lower levels being implicitly

aptured by genetic and functional differences among organisms.

We refer to elements of the matrix D|L as ‘measures’ of biodi-
ersity. Measures may be combined in arbitrarily complex formulae
o generate an unlimited set of biodiversity indices I. For example,
DNA sequences: codons to genes Genes and genetic networks
Molecular surfaces Lock and key (e.g. enzyme) motifs

combining L = species and D = abundance produces indices such as:
Simpson (I1), Shannon (I2) or Gini–Simpson (I3) indices:

I1 =
S∑

i=1

p2
i

I2 = −
S∑

i=1

pi log pi

I3 = 1 −
S∑

i=1

p2
i ,

(1)

where pi = abundance(i)/
∑

Sabundance for the ith species and S is
the total number of species.

Since these indices are all represented by the same measure
in the (D|L) matrix, they are constructed from the same data, so
we would expect high correlation among them. Axiomatically, in
general ‘measures’ are the empirical metrics from which all biodi-
versity indices are composed. Thus all indices found in the literature
can be decomposed into their more fundamental ‘measures’ and
these can be rearranged in arbitrary ways to construct new indices.
New indices can then be designed, optimising them for informa-
tion content. In practice, given a set of synthetic communities
of known total difference in biodiversity, the task of defining an
optimal index amounts to finding the one reporting the largest
empirical diversity with the least number of measures. If diversity
exists among d biological characteristics, then the index convey-
ing diversity with greatest efficiency will be formed from a set of d
orthogonal measures. Rank-ordering orthogonal axes of variation
enables information density to be maximised by removing those
axes with less than a statistically justified information content. We
use principle components analysis (PCA) to do this, applying it to a
population of artificial communities generated by (bootstrap-like)
resampling of marine benthic-community data. In other words, we
assess the sensitivity of indices to diversity within communities by
measuring their sensitivity among communities.

3. Methods

3.1. Source data

Empirical data was obtained from the following sources:

• ITIS—the taxonomically structured species database (Bisby et al.,
2009);
• BioMar—Irish benthic marine database (Picton et al., 1992);
• BIOTIC—Benthic biological traits information catalogue (BIOTIC,

2010)
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Fig. 1. Rank abundance distribution plot (Whittaker plot) showing logarithmic
species abundances against species rank orders constructed for BioMar data. To
analyse type of abundance distribution in communities, following Wilson (1991)
O. Lyashevska, K.D. Farnsworth / E

Records from these datasets were merged into one database to
reate a source for artificial community generation. ITIS provided
species list from which to draw community members, BioMar

rovided taxonomic-distribution constraints and BIOTIC provided
unctional structure; all as detailed next.

.2. Constructing simulated communities

First, following Storch and Sizling (2008) we relaxed the tax-
nomic unit invariance assumption, so that the distribution of
umber of daughter taxons within a parent was allowed to dif-

er among taxonomic levels. Accordingly, we calculated the set of
mpirical probability distributions, denoted as: OiC, FiO, GiF, SiG,
s they generated, respectively, the number of orders in a class,
umber of families in an order, number of genera in a family and
umber of species in a genus. (Note: the use of these distributions
cross all taxonomic units of equivalent level, tacitly assumes weak
axonomic invariance within taxonomic units (Storch and Sizling,
008).)

To make taxonomically realistic communities, we followed the
axonomic sampling scheme described by Hillis (1998): First a
axonomic-tree topology was made for each community (using the
mpirical probability distributions: OiC, etc., to determine numbers
f ramifications). Then species were selected by resampling with
eplacement from the ITIS database, until the topology was instan-
iated as a species list. Finally, species abundances were assigned by
urther resampling of ITIS, following a log-normal distribution, to
ive realistic abundance distributions. The following describes the
ommunity-simulation algorithm in more detail (see mathematical
ymbols in Appendix A).

.2.1. Establishing taxonomic topology

. The complete set of taxonomic classes in the BioMar database
(total number 115) was identified as CT .

. 1000 artificial communities were prepared as empty sets Wi,
each then being assigned a number, Nc(i), of members of the
class list CT , where Nc = 1, . . ., 115. Nc(i) was randomly generated
for each community following a uniform distribution to give a
spread of species richness among the synthetic communities.

The following steps were repeated for each community Wi in
urn (i = 1, . . ., 1000).

. For each taxonomic class Cj(i), (j = 1, . . ., NC(i)), of the community
set of classes CW (i), the number of taxonomic orders NO(i, j) in
Cj(i) was assigned by random sampling following the OiC (orders
in class) distribution.

. For each taxonomic order Ok(i, j), (k = 1, . . ., NO(i, j)), in each
class Cj(i), of the community set of orders OW (i), the number
of families NF(i, j, k) in Ok(i, j) was assigned by random sampling
following the FiO (families in order) distribution.

. For each family Fm(i, j, k) (m = 1, . . ., NF(i, j, k)) in each order Ok(i,
j), of the community set of families FW (i), the number of gen-
era NG(i, j, k, m) in Fm(i, j, k) was assigned by random sampling
following the GiF (genera in family) distribution.

. For each genus Gg(i, j, k, m) (g = 1, . . ., NG(i, j, k, m)) in each family

Fm(i, j, k), of the community set of genera GW (i), the number of
species NS(i, j, k, m, g) in Gg(i, j, k, m) was assigned by random
sampling following the SiG (species in genera) distribution.

This resulted in 1000 community taxonomic tree topologies,
ach described by a set of numbers of ramifications at each tax-
nomic level: Nx(i) where x = C, O, F, G, S.
several models were fitted. The horizontal bars are showing actual values. The sim-
plest case is the null curve, where the individuals are randomly distributed among
observed species, and there are no fitted parameters.

3.2.2. Establishing community from topology
Each community-tree was then instantiated by selecting species

from the ITIS database, such that they fit into the taxonomic tree to
give the correct number of each taxon in the community, using the
following algorithm:

For each class Cj(i) of community W(i), select from ITIS a set of
NO(i, j) orders which are members of that class. For each of these
orders Ok(i, j), select from ITIS a set of NF(i, j, k) families which are
members of the order. For each of these families Fm(i, j, k), select
from ITIS a set of NG(i, j, k, m) genus which are members of the
family. For each of these genus Gg(i, j, k, m), select from ITIS a set of
NS(i, j, k, m, g) species which are members of the genus.

In the above, all sampling followed a random uniform distribu-
tion, selecting by the database items index (ensuring unbiased and
independent sample distributions). This resulted in a set of 1000
communities, each comprising a species list, differing in species
richness and composition, but having distributions among taxa that
match the BioMar dataset. The taxonomic richness-distribution
(number of branches at each level) of BioMar data significantly
differed from ITIS (�2 = 567, df = 389), but the magnitude of this dif-
ference (never more than 60%) was small compared to the ratio
in scale between the two data-sets, ITIS being approximately 50
times larger than BioMar. Since BioMar was consistently less rich
than ITIS, the latter was always able to provide samples with a
taxonomic richness-distribution representing that of BioMar. Each
species carried 15 functional traits with it from the BIOTIC database
(containing a total of 40 traits), so that the simulated communities
also had a representative distribution of functional traits. Traits,
combined into species-by-traits matrix, were used to calculate the
functional diversity indices. Selected traits are listed in Appendix
B.1 and include food type, maximum size, habitat, biogeographic
range or biozone, coded as continuous, ordinal, nominal, or binary
traits.

3.2.3. Assigning abundances

Finally each species in each community was assigned a pop-

ulation abundance, following the log-normal distribution Fig. 1.
The original intention was to match species abundance to trophic
level through the BIOTIC database traits, but we found only 2%
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Table 2
Models parameters for rank abundance distribution plot.

par1 par2 par3 Deviance AIC BIC

Null 2504.66 13428.37 13428.37
Preemption 0.00051608 842.30 11768.01 11774.44

517.93 11445.64 11458.50
540.94 11468.64 11481.50

212.56 182.16 11111.87 11131.16
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Fig. 2. The correlation between different biodiversity indices in a two-dimensional

The largest single proportion of variance among the top three PCs
was explained by the functional diversity cluster (Fig. 4) of indices.
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verlap in trophic traits between BioMar and BIOTIC species, which
as insufficient to create realistic correlation. Thus, in this instance
e randomly allocated lognormal abundances to species, since this

ommonly fits empirical distribution of species abundance Wilson
1991) and fits the BioMar data best with two parameters (see
able 2).

.3. Indices and measures of biodiversity

Biodiversity indices I were then calculated using the pub-
ished algorithms dbFD{FD}(Laliberté and Shipley, 2010) and
axondive{vegan}(Oksanen et al., 2010) for functional and tax-
nomic diversity, respectively. Structural diversity indices were
alculated directly from species abundance distributions. Defini-
ions of indices are shown in Appendix C.1.

.4. Biodiversity measures

Principal components were calculated from a standardised
orrelation matrix using a singular value decomposition of the
entered data matrix (prcomp{stats} R Development Core Team,
010). The dendogram was constructed from hierarchical cluster-

ng of biodiversity indices applied to the columns of the rotation
atrix. Scalar distances were computed using Manhattan metrics

o preserve orthogonal additivity (though Euclidean would be an
cceptable alternative).

. Results

.1. Simulation

Spearman correlation coefficients for pairs of biodiversity
ndices (Fig. 2) revealed the near-perfect relationship between
impson (SIMP) and Pielou (PIEL); Jaccard (JACC) and Sorensen
SORE) and Chao–Jaccard (CHJA) and Chao–Sorensen (CHSO) pairs,
emonstrating mathematical redundancy among these indices.
ince Shannon (SHAN) entropy showed strong negative (corre-
ation with the Simpson–Pielou pair, it too enters a cluster of
omposition-based indices, along with Turnover, which was corre-
ated with the Jaccard–Sorrensen pair. Perhaps the most surprising
nd important result shown in Fig. 2 is the very low correlation
pecies richness (RICH) makes with the other indicators.

Taxonomic diversity indices were not correlated with either
omposition or function indices (� lies in the range (−0.054; 0.072)
mong pairings which include taxonomic indices. Particular pairs
f taxonomic indices were correlated with one-another (in partic-
lar taxonomic distinctness (DSTR) is correlated with most other
axonomic indices). Most taxonomic diversity indices showed some
orrelation with species richness (RICH), the largest, being for tax-
nomic diversity accounting for species richness (SPLU), where
= 0.995. Similarly, we found quite strong correlations among func-

ional diversity indices, but not among pairs of function and any

ther sort of index.

The first three axis of the PCA (of 19 indices) accounted for
1.7% of total variation, the first five axes accounted for 82.3%. The
ommunity composition cluster of indices (see Fig. 4) contributed
space represented as a heatmap. Dark shade gives negative correlation and light
shade gives positive correlation.

almost exclusively to PC1, while taxonomic and functional diver-
sity contributed approximately equally to PC2 and PC3 (Fig. 3).
S J S C C S T A R D D L D S F F F
R

A

Fig. 3. Variance explained by each variable in three-dimensional space (61.7%). Dif-
ferent segments on the bar show contribution of the variables to corresponding
principal components (see Appendix Table C.1 for key to index labels).
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atrix contain eigenvectors (principal components). Depending on a cut off point
everal clusters can be observed: cluster 1, community structure and composition;
luster 2, functional diversity; cluster 3, taxonomic diversity.

his means that functional diversity was the most variable kind of
iodiversity among simulated communities.

The proportion of total diversity estimated by species richness
lone was very variable and typically low (Fig. 5). Inevitably, this
ingle measure – species richness – gives a minimum estimate of
otal biodiversity, but the extent to which information is lost when
his is the sole measure of diversity is striking.

. Discussion

As conservation priorities move from single charismatic species
o whole ecological communities and economists demand quan-

itative justifications for conservation, the need for a unifying

easure of biodiversity mounts. At the start of this paper we asked
ow well the simplest, most commonly used biodiversity index
species richness – meets this demand. If biodiversity is truly

ig. 5. The y-axis is scalar distance from the origin in the largest three PC’s (M*),
lotted against species richness (RICH) for 1000 synthetic communities shown here
ank-ordered by species richness from left to right. Dashed line shows the contri-
ution of species richness alone on the y-axis.
cal Indicators 18 (2012) 485–492 489

the aggregate of functional, structural and taxonomic diversity,
then Fig. 5 shows species richness to be missing a significant por-
tion of the information. This happened because in our simulations,
functional, structural and taxonomic varieties were not simple cor-
relates of species richness, as indeed they are not in real life.

To explain this, we start with a simple ‘null hypothesis’ of ran-
dom trait assignment, in which each species carries its own traits
of taxonomic identity and functional role. In this model, as more
species are randomly placed into a community, aggregate diversity
increases. However, given a limited set of functional roles and using
random selection from a species pool, functional diversity may be
expected to rise asymptotically with species richness, saturating
when the functional-set is complete. Only if the set-size is very
large, will a near-linear increase with species richness be observed.
Further, because taxonomic diversity is measured through dis-
tances on the taxonomic tree, random selection of species would
confer highly unpredictable taxonomic diversity at low species
richness, but would gradually converge onto the average taxonomic
distance of the species-pool as richness (and therefore sample size)
is increased. Finally, if relative species abundances were allocated at
random, then structural diversity indicators would converge from
great uncertainty at low abundance (small sample size) to some
steady value (governed by the statistical distribution used to gen-
erate species abundances), for large communities. In short, even
with random selection of species to construct communities, we
would not expect species richness to make a good substitute for
taxonomic, compositional or functional diversity (or all three).

Departing from earlier simulation studies where species had
been selected at random (e.g. Clarke and Warwick, 1998, 2001;
Villéger et al., 2008; Vellend, 2005; Nipperess et al., 2010), we
composed model communities such that they reflected the higher-
taxon composition of real communities, identified in the BioMar
database. The resulting correlation among species taxa causes a
narrowing of taxonomic diversity both within and among com-
munities. Further, since real species were sampled, with their real
functional traits attached, the functional diversity was also con-
strained and potentially correlated with taxonomic diversity. This
is why it is significant that, as Fig. 2 shows, we found no evi-
dence for correlation between functional and taxonomic indices.
Although abundances generally reflect at least trophic structure,
we were unable to obtain sufficient data to incorporate this into the
synthetic communities. Instead, community composition indices
were based on a lognormal abundance distribution that statistically
matched the data (see Fig. 1), but with no correlation to functional
traits.

Strikingly, Fig. 3 shows that species richness contributes almost
nothing to the first principal axis, which is dominated by the com-
munity composition indices. Variation in all, but most notably
compositional diversity indices, was independent of species rich-
ness. The lack of correlation between compositional and functional
indices does not weaken that finding. Community ecologists have
long known that species richness alone misses much diversity (e.g.
Magurran, 2004; Wilsey et al., 2005), which is why compositional
indices such as Simpson’s are well supported. Also Cadotte et al.
(2010) recognised that composition and phylogenetic diversity
were largely independent and developed unifying indices for plant
communities and whilst Gallardo et al. (2011) found correlation
among some functional and compositional indices, they concluded
that taxonomic, functional and compositional diversity each pro-
vided independent and useful information. In corroboration, when
we aggregated these three categories of diversity (Fig. 5), we found
that species richness no more than sets the lower limit of biodi-

versity, which varies above this limit in ways unrelated to species
richness. So our first message must be that species richness, quick
and simple though it is, turns out to be a rather poor estimate of
biodiversity as we have defined it.
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See Tables C.1–C.3.

Table A.1
Mathematical symbols used in the text.

D The set of biodiversity descriptors
L The set of biodiversity levels
D A particular biodiversity descriptor
L A particular biodiversity level
I A biodiversity index
M* Scalar distance in principal-axis space, summarising total

biodiversity
W Set of communities
Wi The ith community
CT Classes in Biomar
Nc(i) Number of classes in ith community
CW (i) The set of classes in community i
Cj(i) The jth class of the ith community
NO(i, j) Number of orders in the jth class of ith community
Ok(i, j) The kth order of the jth class of ith community
OW (i) The set of orders in ith community
NF(i, j, k) Number of families in kth order of jth class in ith

community
Fm(i, j, k) mth family in kth order of jth class in ith community
FW (i) The set of families in ith community
NG(i, j, k, m)) Number of genus in mth family of the kth order of jth class

in ith community
Gg(i, j, k, m) gth genus in mth family of kth order of jth class in ith

community
GW (i) The set of genus in ith community
NS(i, j, k, m, g)) Number of species in gth genus of mth family of the kth

order of jth class in ith community

Table B.1
Functional traits and their values.

Traits Values

Food type Zooplankton, phytoplankton, detritus,
suspended particles

Size 1–50 cm
Habitat Free living, attached, erect
Regeneration Yes/no
Life span 1–100 years
Reproduction frequency Annual/biannual, protracted/episodic
Fertilisation type External/internal
Biogeographic range Cold/temperate
Depth range 0–1765 m
Biozone Littoral/pelagic
Environmental position Epifaunal, epifloral, demersal, pelagic
Feeding method Herbivore, predator, scavenger, suspension

feeder
Growth form Radial, stellate, turf
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The intuition of Franklin (1988) and Noss (1990) that biodi-
ersity is essentially three-dimensional, the axes being: structural,
axonomic and functional diversity is partially confirmed by our
nalysis. However, we also see some built-in correlations among
hese traits of biodiversity, so the axes are unlikely to be strictly
rthogonal. In simulated communities, compositional aspects of
iodiversity were found to be least correlated with function and
axonomy, but this is not surprising since abundances were gen-
rated by a process that was independent of the taxonomy and
unction. Correlations among various types of biodiversity indices
ave often been reported elsewhere (e.g. Mérigot et al., 2007;
eino, 2008). Winter et al. (2009) showed how correlation between

pecies richness and taxonomic or phylogenetic indices depends
n the taxonomic distance of introduced (or lost) species. Gallardo
t al. (2011) found significant correlations among some biodiversity
ndicators, especially with Shannon diversity, but these were likely
o-variates of environmental variation, particularly in relation to
uman disturbance. The communities generated by resampling in
ur work are of course independent of environmental conditions,
o correlations among indices must reflect underlying structure.
hese results raise important questions about priorities in biodiver-
ity measurement. If function, taxonomy (or better still phylogeny)
nd community composition are substantially independent, then
ny observed community structure may be produced from a wide
ariety of species (implying species substitutability)—and vice
ersa. Further, many different communities, with different species
ompositions, could perform equivalent functions (also implying
pecies substitutability). Thus the strength of inherent correlations
mong the three major categories of biodiversity sheds light on
pecies substitutability.

By defining biodiversity as the total difference among a biolog-
cal system’s parts we were able to see it as information embodied
ithin the system, rather than merely empirical information about

he system. This gives a different perspective from the more usual
iew of biodiversity simply as an indicator of ecological change. In
ur more ontological view, biodiversity is the information required
o fully describe or reproduce the community as a living complex
ystem. As such, it is very much greater than we can measure with
iodiversity indices—these are merely comparative estimators.
iversity, as a quantification of difference, is multidimensional:
ach dimension being an axis of variation in the system. Even
pecies themselves differ in an uncounted diversity of ways, making
or a very large and unknown dimensionality to total biodiversity.
xisting indices provide transect projections and cross-sectional
iews to sample this multi-dimensional space. The most efficient
ampling would be achieved by a set of orthogonal estimators,
n particular those projecting along the major axes of variation:
ines of greatest variance in diversity space. By deconstructing
xisting indices into their ‘level’ and ‘descriptor’ components,
e have shown it is possible to identify the available projec-

ions as ‘filled elements’ in the permutation matrix of all possible
evel and descriptor pairs. Statistical ordination can then identify
he desired orthogonal set of major axes, given a suitable data
ource.

The practical consequence of our analysis is a parsimonious one.
aced with the urgent need to describe the rapidly declining diver-
ity of life on earth, as comprehensively as possible but with limited
esources, we see that no more than three well chosen indices are
ecessary. In the extreme of emergency cataloguing, we find that
he simplest of all indices – species richness – performs poorly as a
ingle surrogate for the three aspects of biodiversity, but of course
t still may be the only practical option. When species, their phy-
ogeny and significant functional traits are catalogued together in
ccessible databases, then field-collected species lists will serve as

key to estimating biodiversity in its fuller meaning. The need for

his development sets an urgent goal for future biodiversity action.
cal Indicators 18 (2012) 485–492
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Appendix A. List of symbols

See Table A.1.

Appendix B. Functional traits

See Table B.1.

Appendix C. Biodiversity indices
Mobility Crawler, drifter, swimmer
Reproduction type Vegetative, budding, self-fertilisation
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Table C.1
Community composition indices.

Composition
Simpson SIMP
Pielou PIEL
Jaccard JACC
Sorensen SORE
Chao–Jaccard CHJA
Chao–Sorensen CHSO
Shannon SHAN
Turnover TURN
Abundance ABUN
Richness RICH

Taxonomic diversity
Taxonomic diversity Clarke and Warwick (1998) DELT
Taxonomic distinctness Clarke and Warwick (1998) DSTR
Variation in taxonomic
distinctness

Clarke and Warwick (2001) LPLU

Taxonomic diversity for
presence/absence

Clarke and Warwick (1998) DPLU

Taxonomic diversity
accounting for species richness

Clarke and Warwick (2001) SPLU

Functional diversity
Functional evenness Villéger et al. (2008) FEVE
Functional divergence Mason et al. (2003) and

Villéger et al. (2008)
FDIV

Functional dispersion Anderson (2006) and Laliberté
and Legendre (2010)

FDIS

Rao quadratic entropy Rao (1982) and Botta-Dukát
and Wilson (2005)

RAOQ

Table C.2
Taxonomic diversity and distinctness indices. Where xi(i = 1, . . ., s) is the abundance
(presence/absence for �+), n is the total number of individuals in the community
and ωij is the distinctness weight of the path length linking any two entities.

Index Formula

Taxonomic diversity � =
∑∑

i<j
ωijxixj

n(n−1)/2

Taxonomic distinctness �∗ =
∑∑

i<j
ωijxixj∑∑

i<j
xixj

Variation in taxonomic distinctness �+ =
∑∑

i<j
ω2

ij

n(n−1)/2 − (�+)2

Average taxonomic distinctness �+ =
∑∑

i<j
ωijxixj

n(n−1)/2

Table C.3
Functional diversity indices.

Index Formula

Functional dispertion FDis =
∑

(ajzj)/
∑

(aj), where aj abundance of
species j, zj is the distance of species j to the
weighted centroid c

Functional evenness FEve =
∑nLC −1

LC =1
min(PEW

LC ,(1/(nLC −1)))−(1/(nLC −1))

1−(1/(nLC −1))

PEWLC is a partial weighted evenness

PWELC = EW
LC∑nLC −1

LC =1
EW

LC

EWLC = (dist(i, j)/(ωi + ωj)) with i and j being a
pair of taxonomic units and ω their weight.

Functional
divergence

FDiv = (�d + dG)/(�|d| + dG); �d is the sum
of abundance-weighted deviances:

�d =
∑S

i=1
ωix(�Gi − dG) �|d| is absolute

abundance-weighted deviance; dG is the mean
euclidean distance to the center of gravity:

dG = (1/S)
∑S

i=1
�Gi

Rao quadratic
entropy

Q =
∑nLC −1

i=1

∑nLC

j=i+1
dijpipi the relative

abundances of species p (or other taxonomic
units) and a measure of the pairwise functional
differences between them—dij
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